Modeling the Carbon Footprint of Wood Pallet Logistics

Andres Carrano, PhD.
Rochester Institute of Technology
Auburn University

carrano@auburn.edu

ABOUT ANDRES....

- Education
 - Universidad Catolica, Venezuela (B.S)
 - North Carolina State University (M.Sc., Ph.D.)

- Work experience
 - Rochester Institute of Technology (13 years)
 - Visiting professor
 - Kanazawa Institute of Technology, Japan
 - Yeditepe University, Turkey
 - Toyota Production Systems Lab (Director 2006-2013)
 - Starting at Auburn University in 3 days!

- Research Interests:
 - Manufacturing processes and systems.
 - Surface metrology and engineering.
 - Sustainable product design
 - Material Handling (proud CICMHE member!)
WORKSHOP OBJECTIVES

By the end of the session, the participants will (hopefully!) have:

- Developed a fundamental understanding of pallet anatomy, pallet logistics and pallet life cycle.
- Developed a basic understanding of the concepts of embodied energy, CO\textsubscript{2} impacts, functional units and LCA.
- Performed CO\textsubscript{2} calculations for (at least) one transportation leg and one process related to pallets.
- Been exposed to a demo of an educational excel-based tool that can be incorporated in their classroom.

AGENDA

- Part A: Motivation.
- Part B: Fundamentals of LCA.
- Part C: Carbon footprint of wood pallet logistics.
- Part D: Demo of a teaching Excel tool.
PALLETS ACTIVITY AND IMPACTS

2 billion pallets in use everyday.

8.8 million trucks traveled 263 billion miles in 2006 consuming 16.8 billion gallons of fuel (3).

Transportation / SC represent 10% U.S. GDP and produces 2/3 CO emissions nationwide (3,4)

About 500 MM Tons of carbon equivalent emissions.

80% of U.S. trade is carried on pallets (5)

700 million new pallets/year (1)

Resource consumption: 70 million of dry tons of wood fibers (7)

1 Robert J. Bush & Araman (2009); 2 NWPCA (2000); 3 DTS (2009); 4 EPA; 5 Raballan & Aldaz-Carrol (2005); 6 DC Velocity (2008); (7) Dr. M. White, Va Tech.
As companies strive to become more sustainable, a thorough understanding of the environmental impacts of all aspects of the supply chain operations becomes critical.

BREAKDOWN OF PALLETs BY MATERIAL

- **Wood (441 million)**: 88.2%
- **Plastic (8.3 million)**: 9.9%
- **Metal (1.1 million)**: 0.2%
- **Plastic (17.4 million)**: 1.7%
- **Other (49.6 million)**

1 Source: Mazeika, A. (2010).
PART B: Fundamentals of Life Cycle Assessment

- Life cycle of products
- Embodied energy
- CO\textsubscript{2} equivalent emissions.
- Functional unit
- LCA Techniques and Eco audits

THE PRODUCT LIFE-CYCLE

Used with permission from Dr. M. Ashby (Cambridge University)
TYPICAL LCA OUTPUT
(the good, the bad and the ugly)

Typical LCA output

Aluminum cans, per 1000 units
- Bauxite: 59 kg
- Oil fuels: 148 MJ
- Electricity: 1572 MJ
- Energy in feedstock: 512 MJ
- Water use: 1149 kg
- Emissions: CO₂: 211 kg
- Emissions: CO: 0.2 kg
- Emissions: NOₓ: 1.1 kg
- Emissions: SO₂: 1.8 kg
- Particulates: 2.47 kg
- Ozone depletion potential: 0.2 x 10⁻³
- Global warming potential: 1.1 x 10⁻³
- Acidification potential: 0.8 x 10⁻³
- Human toxicity potential: 0.3 x 10⁻³

Roll up into an "eco-indicator"?

EMBODIED ENERGY OF MATERIALS

Generic data
- Material energy MJ / kg
- Database of embodied energies for materials
- Process energy MJ / kg
- Database of processing energies for materials

Transport, MJ / tonne.km
- Sea freight: 0.11 – 0.15
- Barge (river): 0.75 – 0.85
- Rail freight: 0.80 – 0.9
- Truck: 0.9 – 1.5
- Air freight: 8.3 – 15

Used with permission from Dr. M. Ashby
(Cambridge University)
DRINK CONTAINER

Materials
- PET body: 38 g
- PP cap: 5 g

Material energy MJ / kg
- Embodied energy, PET: 85
- Energy to blow mould: 11

Manufacture
- PET body molded: 38 g
- PP cap molded: 5 g

Transport, MJ / tonne.km
- Sea freight: 0.11
- Truck: 1.3

Use
- Refrigeration: 5 days
- Transport: 200 km

Disposal
- Recycling: Yes
- Transport: 15,000 km

Refrigeration, MJ / m³.day
- Refrigeration (4°C): 10.5
- Freezing (-5°C): 13.0

ENERGY BREAKDOWN FOR PET BOTTLE

What would the CO2 graph look like?

What would it depend upon?

What about “other” emissions?

Used with permission from Dr. M. Ashby (Cambridge University)
ENERGY CONSUMPTION OF PRODUCTS

Which phase dominates? Material - Manufacturing - Use - Disposal
(Approximate breakdown: Bey, 2000, Allwood, 2006)

Aircraft
Automobile
Appliance (refrigerator)

Multi-level parking deck
Family home
Carpet

EMBODIED ENERGY OF MATERIALS PER KG

Used with permission from Dr. M. Ashby
(Cambridge University)
EMBODIED ENERGY OF MATERIALS PER M³

FUNCTIONAL UNIT EXAMPLE
EMBODIED ENERGY PER UNIT OF FUNCTION

Function: to contain 1 liter of fluid

<table>
<thead>
<tr>
<th>Material</th>
<th>Mass (g)</th>
<th>Mass/liter (g/liter)</th>
<th>Emb. energy (MJ/kg)</th>
<th>Energy/liter (MJ/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>325</td>
<td>433</td>
<td>14</td>
<td>6.1</td>
</tr>
<tr>
<td>PE</td>
<td>38</td>
<td>38</td>
<td>80</td>
<td>3.1</td>
</tr>
<tr>
<td>PET</td>
<td>25</td>
<td>62</td>
<td>84</td>
<td>5.4</td>
</tr>
<tr>
<td>Aluminum</td>
<td>20</td>
<td>45</td>
<td>200</td>
<td>9.0</td>
</tr>
<tr>
<td>Steel</td>
<td>45</td>
<td>102</td>
<td>23</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Used with permission from Dr. M. Ashby (Cambridge University)

PART C: Carbon Footprint of Wood Pallet Logistics
PALLET LIFE CYCLE

Legend:
- EOL
- Shipping
- : Inventory
- : Facility

Materials and Manufacturing stage

Use and transportation stage

Repair, Recycling and End-of-life stage
PALLET LIFE CYCLE (MATERIALS)

CO2 LCA ASSESSMENT - PALLETS

CO2 Emissions Profile

<table>
<thead>
<tr>
<th>Lifecycle Stage</th>
<th>CO2 Emissions (kg CO2 Eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Elements</td>
<td>25%</td>
</tr>
<tr>
<td>Manufacturing Processes</td>
<td>7%</td>
</tr>
<tr>
<td>Repair/Recycling</td>
<td>18%</td>
</tr>
<tr>
<td>Transportation (Use Stage)</td>
<td>44%</td>
</tr>
<tr>
<td>End of Life</td>
<td>6%</td>
</tr>
<tr>
<td>Total System Footprint</td>
<td>14.94</td>
</tr>
</tbody>
</table>
SCOPE

48' x 40” Stringer
13.5 board feet

48' x 40” Block
20.1 board feet

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High density eastern hardwoods</td>
<td>60%</td>
</tr>
<tr>
<td>Medium density eastern hardwoods</td>
<td>10%</td>
</tr>
<tr>
<td>Eastern oaks</td>
<td>30%</td>
</tr>
<tr>
<td>Helically threaded nails</td>
<td>84</td>
</tr>
<tr>
<td>High density eastern hardwoods</td>
<td>39%</td>
</tr>
<tr>
<td>Southern yellow pine</td>
<td>61%</td>
</tr>
<tr>
<td>Annularly threaded nails (2 different lengths)</td>
<td>102</td>
</tr>
</tbody>
</table>

RAW MATERIALS

Lumber
- Timber extraction
- Logs transported to the lumber mill
- Logs debarked and rip sawn

Nails
- Steel production
- Manufacture from steel
- Transportation
LUMBER MILLS *(chamfered boards)*

(3:00 minutes)

Joudelia: lumber production to board feet
http://www.youtube.com/watch?v=tQTA7jB4t_k

EMISSIONS MODEL FOR MATERIALS PHASE

Total CO2 Equivalent Emissions Derived from Material Inputs

- Emissions associated with material for new Stringer Pallets
 - Emissions from 1 new stringer pallet
 - Multiplied by number of pallets

- Emissions associated with material for new Block Pallets
 - Emissions from 1 new block pallet
 - Multiplied by number of pallets

- Emissions from sourcing 1 board foot of hardwood
 - Multiplied by number of pieces in a stringer pallet

- Emissions associated with fasteners (threaded nails)
 - Multiplied by number of nails

- Emissions from finishing and transportation

- Emissions from primary manufacture

- Emissions from secondary manufacture

- Emissions from finishing and transportation
MANUFACTURING

- Assembly of pallets (nailers)
- Treatments
 - Kiln drying (19% EMC)
 - Phytosanitation
 - Heat treatment (HT - 133°F, 30 min)
 - Fumigation (MB - methyl bromide)
 - Mold dipping
 - PQ80, USDA approved, 3 months

PALLET ASSEMBLY (*semi-automated*)

(1:45 minutes)

http://www.youtube.com/watch?v=Efmy_aVQ1E
Pallet Assembly (manual)

(1:00 minute)

CMS Scarpari: Block Pallet manufacturing.

http://www.youtube.com/watch?v=Eh0CI9FvFlo

Emissions Model for Manufacturing Phase

Emissions associated with manufacturing new stringer panels

- Emissions from molding process on mold and die
 - Multiplied by total number of stringer panels

- Emissions from heat treating one stringer panel
 - Multiplied by % of pallets that require heat treating

- Emissions from kiln drying one stringer panel
 - Multiplied by % of pallets that require kiln drying

- Emissions from mold dipping one stringer panel
 - Multiplied by % of pallets that require mold dipping

Total CO2 Equivalent Emissions Derived from Manufacturing Process

- Emissions associated with manufacturing new block pallets
 - Emissions from molding process on mold and die
 - Multiplied by total number of block pallets
 - Emissions from heat treating one block pallet
 - Multiplied by % of pallets that require heat treating
 - Emissions from kiln drying one block pallet
 - Multiplied by % of pallets that require kiln drying
 - Emissions from mold dipping one block pallet
 - Multiplied by % of pallets that require mold dipping
EXERCISE
CALCULATION OF CO₂ FOOTPRINT OF MANUFACTURING PHASE

CARBON FOOTPRINT EXERCISE

Neruda Pallets S.A wants to manufacture 500 stringer pallets and 700 block pallets, for their next month’s order from *Lider* Supermarkets.

- **Transportation Distances**
 - Wood supplier to pallet manufacturer 480 km by truck
 - Nail supplier to pallet manufacturer 7,322 km by ship and 800 km by train
 - Pallet manufacturer to customer 400 km by truck

- **Pallet treatment and conditioning**
 - Heat Treatment
 - 30% Stringer pallets
 - 60% Block pallets
 - Kiln Dried (19% EMC)
 - 30% Stringer pallets

Example Data References: SimaPro Software (Eco Invent Database) & CES Cambridge Engineering Selector
EMISSIONS BY ENERGY SOURCE

<table>
<thead>
<tr>
<th>Source</th>
<th>kg CO2/kwh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>1.190</td>
</tr>
<tr>
<td>Oil</td>
<td>0.885</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>0.684</td>
</tr>
<tr>
<td>Other</td>
<td>0.138</td>
</tr>
<tr>
<td>Solar</td>
<td>0.047</td>
</tr>
<tr>
<td>Nuclear</td>
<td>0.013</td>
</tr>
<tr>
<td>Wind</td>
<td>0.012</td>
</tr>
<tr>
<td>Hydroelectrical</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Source: SimaPro Software (Eco invent Database)

ENERGY MIX

<table>
<thead>
<tr>
<th>Units</th>
<th>Non-Renewable Sources</th>
<th>Renewable Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coal</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>CO2 kg/kwh</td>
<td>1.19</td>
<td>0.684</td>
</tr>
<tr>
<td>Percentage of U.S. Grid</td>
<td>50%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Total Average U.S. Grid kg CO2/kwh 0.749

Inputs

48' x 40'' Stringer

- **Wood**
 - 13.5 board feet (green wood)
 - Unit weight: 1.7006 kg/boardfoot
- **High density eastern hardwoods**: 60%
- **Medium density eastern hardwoods**: 10%
- **Eastern oaks**: 30%
- **Steel**
 - 84 Helically threaded nails
 - Unit weight: 0.0035 kg/nail

48' x 40'' Block

- **Wood**
 - 20.1 board feet (air dried ~30% EMC)
 - Unit weight: 1.7050 kg/boardfoot
- **High density eastern hardwoods**: 39%
- **Southern yellow pine**: 61%
- **Steel**
 - 54 Annularly threaded nails (short - 1.25’’)
 - Unit weight: 0.0017 kg/nail
 - 48 Annularly threaded nails (long - 3’’)
 - Unit weight: 0.0046 kg/nail
Pallet Flow Diagram

Inputs

- 48' x 40" Stringer
 - Assembly time: 1 minute

- 48' x 40" Block
 - Assembly time: 2 minutes

Electric Nail Gun Power Consumption: XXXX kwh
Power source: local grid

- Heat Treatment: 1.5 hours with energy consumption of 850,000 btu/hr
- Kiln Drying: 96 hours with energy consumption 83,840 btu/hr.

Both heat treatment and kiln drying are powered using natural gas and use a chamber that has a 600 pallet maximum capacity.

<table>
<thead>
<tr>
<th>Pallet</th>
<th>Manufacturing</th>
<th>25% MC</th>
<th>19% MC</th>
<th>15% MC</th>
<th>12% MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stringer</td>
<td>23.3</td>
<td>20.0</td>
<td>19.1</td>
<td>18.2</td>
<td>17.7</td>
</tr>
<tr>
<td>Block</td>
<td>34.8</td>
<td></td>
<td>23.6</td>
<td>22.7</td>
<td>22.3</td>
</tr>
</tbody>
</table>
Pallet Flow Diagram

- **2448 kg CO2** from Lumber Mill to Boardfeet.
- **1021 kg CO2** from Boardfeet to Heat/Kiln Treatment.
- **1 kg CO2** from Heat/Kiln Treatment to Pallet Manufacturer.
- **845 kg CO2** from Pallet Manufacturer to Product Manufacturer (Pallet User).
- **1868 kg CO2** from Product Manufacturer to Wood Scrap.
- **33 kg CO2** from Wood Scrap to China's Nail Manufacturer.
- **1240 kg CO2** from China's Nail Manufacturer to Annularly Threaded Nail.
- **3 kg CO2** from Annularly Threaded Nail to Use/Transportation.

Total Carbon Footprint Summary

- **Materials**: 3688 kg CO2
- **Mfg**: 3768 kg CO2
- **Use/Transportation**: ?
- **Repair**: ?
- **End of Life**: ?

<table>
<thead>
<tr>
<th>Process</th>
<th>kg CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodied Energy: Wood</td>
<td>2448</td>
</tr>
<tr>
<td>Embodied Energy: Nails</td>
<td>1240</td>
</tr>
<tr>
<td>Total</td>
<td>3688</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>kg CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Emissions: Wood</td>
<td>1021</td>
</tr>
<tr>
<td>Transportation Emissions: Nails</td>
<td>33</td>
</tr>
<tr>
<td>Assembly</td>
<td>1</td>
</tr>
<tr>
<td>Drying</td>
<td>1888</td>
</tr>
<tr>
<td>Transportation Emissions: Final Product</td>
<td>845</td>
</tr>
<tr>
<td>Total</td>
<td>3768</td>
</tr>
</tbody>
</table>
USE AND TRANSPORTATION

Emissions based on:
- Mode
- Type of pallet
- Kiln treatment
 - Weight (as a function of EMC)

![Graph showing pallet weight by EMC]

PALLET RETURN

- Classic mix at warehouse stores

![Image showing pallets with goods]
REPAIR AND RECYCLING

- Not a glamorous business!
- Dock sweeping and pallet recovery
 - Pallet recyclers or “pallet gypsies”
- Transportation
- Pallet sortation
 - No touch (resale or “crossdocking”)
 - Leased pool (CHEP, Peco, etc)
 - Repair (core) pallets
 - Donor (tear down) pallets
 - EOL disposal pallets

PALLET DAMAGE
REPAIR AND RECYCLING

- Characterization of pallet damage

- NWPCA Uniform standard for wood pallets (2011)
 - Class I (A): plate repairs OK but no companion stringers
 - Class II (B): 1-2 repaired stringers with long companions
 - Class III (C): otherwise

REPAIR AND RECYCLING

Characterization of the repair process (New and “A”)

<table>
<thead>
<tr>
<th>Stringer Position</th>
<th>Light foot- Good handling</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Pallet Cycle 9</td>
<td>10</td>
<td>15 17 18 24</td>
</tr>
<tr>
<td>A Pallet</td>
<td></td>
<td>26 26</td>
</tr>
<tr>
<td>Repair of boards – NB</td>
<td>Repair of stringers – NB</td>
<td>Replace of boards – BB</td>
</tr>
</tbody>
</table>

- Damage pattern depends on service environment (handling) and weight of load
- CO2 includes emissions from transportation, repair processes, and materials (nails and plates).
END OF LIFE

- End of life disposal
- Transportation
- Scenarios

<table>
<thead>
<tr>
<th>Application by region</th>
<th>NE</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscaping</td>
<td>60%</td>
<td>-</td>
</tr>
<tr>
<td>Animal Bedding</td>
<td>4%</td>
<td>10%</td>
</tr>
<tr>
<td>Biofuel</td>
<td>35%</td>
<td>80%</td>
</tr>
<tr>
<td>Municipal Waste</td>
<td>1%</td>
<td>10%</td>
</tr>
</tbody>
</table>
LCA ANALYSIS

Single Cycle Distance: 100 Miles by Train
End of Life: 100% Incineration (with energy recovery), 10% mulched, 75% Landfilling

PART D: Excel based calculator demo
This project is funded by Material Industry of America (MHIA) Research Grant #11100576